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These are example solutions for your reference under the following conditions.

• If these solutions contain mistakes (and they may), the physical correctness has priority
over them in grading.

• You may not distribute or repost this document.

1. (50 points) Anisotropy in a three-dimensional bosonic dispersion

We consider bosons in three dimensions with an anisotropic dispersion relation ω = γ1(k2
x + k2

y) + γ2k
2
z ,

(γ1 6= γ2) and with only one polarization. (Such particles exist and they are magnetic excitations in some
materials—magnons).

(a) (5 points) Explain in words the concepts of dispersion relation and density of states.

Solution: Dispersion relation: The relation between the energy (or equivalently, frequency) of a
mode and its wavevector. Density of states: The number of modes(/states) per unit energy.

(b) (15 points) Compute the density of states of these bosons. Check that your resulting g(ω) scales with√
ω (if you are unable to solve this question, use g(ω) = C

√
ω in the next subquestions). Hint: to

find the density of states, one needs to restore the spherical symmetry in the integral with a wavevector
substitution.

Solution: We want to find the density of states g(ω), which relates to reciprocal space by∑
k

→ L3

(2π)3

∫
d~k =

∫
g(ω)dω. (1)

We substitute κx =
√
γ1k, κy =

√
γ1ky, κx =

√
γ2kz, s.t.

ω = γ1(k2
x + k2

y) + γ2k
2
z = κ2. (2)

This restores radial symmetry in integration and permits us to integrate over a spherical shell in
κ-space,

L3

(2π)3

∫
d~k =

L3

(2π)3

1

γ1
√
γ2

∫
4πκ2dκ. (3)

Next, we express as a function of ω via

κ2dκ =
1

2

√
ωdω, (4)



and obtain the density of states

g(ω) =
L3

(2π)2

√
ω

γ1
√
γ2
. (5)

(c) (10 points) Compute the heat capacity in the low temperature limit. Leave the definite integral
unevaluated as long as it does not depend on any parameters like γ or β.

Solution: For the bosonic normal modes, the expression for energy is given by

E =

∫ ωD

0

g(ω)h̄ω

[
n(ω, T ) +

1

2

]
dω. (6)

Next, fill in density of states and compile integrals,

E = h̄C

∫ ωD

0

ω3/2

eβh̄ω−1
dω + T independent part (7)

Substitute x = βh̄ω, and find

E =
h̄C

(βh̄)5/2

∫ xD

0

x3/2

ex − 1
dx, (8)

where the integral converges to some constant D for low T, due to the upper bound going to ∞.
The heat capacity becomes

C =
dE

dT
=

5CD

2h̄3/2
T 3/2. (9)

(d) (10 points) Assuming there is a total number N of these bosonic modes, compute the Debye cutoff
frequency ωD.

Solution: Total number of states N is equal to integrating the density of states up to the cutoff
frequency ωD, s.t.

N = C

∫ ωD

0

√
ωdω. (10)

Evaluating the integral results in

ωD =

(
3N

2C

)2/3

=

(
6π2Nγ1

√
γ2

L3

)2/3

. (11)

(e) (10 points) Determine the heat capacity in the high temperature limit. What temperature can be
considered high in this case?

Solution:
C = NkB , (12)

which can be found either by stating Dulong-Petit, or Taylor expansion of the integral via

E =
h̄C

(βh̄)5/2

∫ xD

0

x3/2

ex − 1
dx =

2

3

h̄C

(βh̄)5/2
(βh̄ωD)

3/2
= NkBT. (13)

Temperature T is high when large compared to TDebye.

2. (40 points) Electron and hole-conductivity in the Drude model

We consider a semiconductor, which is a material that can host two types of charge carriers. On the one
hand there are electrons with charge −e and mass me. On the other hand there are holes: particles with
charge +e and mass mh. The concentrations of the electrons and holes are both equal to n.
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(a) (10 points) Write down the equations of motion (one for the electrons and one for the holes) describing
the average acceleration of the electrons and holes in an electric field E. Include a damping force as in
the Drude model.

Solution:

me
d〈~ve〉
dt

= −e ~E − me〈~ve〉
τ

, (14)

mh
d〈 ~vh〉
dt

= e ~E − mh〈 ~vh〉
τ

. (15)

(b) (10 points) From the equations of motion, derive an expression for the total electrical conductivity
σ = 1/ρ as a function of n, me, and mh.

Solution: Steady state problem:

0 = − eE
me
− 〈~ve〉

τ
, (16)

0 =
eE

mh
− 〈 ~vh〉

τ
, (17)

~ve = − eτ
me

E, (18)

~vh =
eτ

mh
E, (19)

je = −ne~ve =
ne2τ

me
E, (20)

jh = ne ~vh =
ne2τ

mh
E, (21)

jtot = je + jh = ne2τ

(
1

me
+

1

mh

)
E, (22)

σtot = ne2τ

(
1

me
+

1

mh

)
. (23)
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(c) (10 points) We will now derive how we expect the conductivity of this semiconductor to scale with
temperature. To do so, we first analyze the effect of temperature on the scattering time τ .

Assuming that the scattering rate 1/τ is linearly proportional to the number of thermally excited
phonons in the system, argue how you expect τ to scale with temperature T when T � TD. (Hint:
recollect how the number of phonons occupying one mode behaves at high temperatures.)

Solution: At T >> TD, the number of phonons in a single mode scales proportional to T as
follows

nB =
1

e
h̄ω

kBT − 1
≈ kBT

h̄ω
, (24)

This means that the scattering time τ scales proportional to 1
T . Therefore,

σ =
ne2τ

m
∝ 1

T
. (25)

(d) (10 points) The concentrations of free electrons and holes in a semiconductor are not constant like in
metals, but rather depend on temperature T : n ∝ e−Eg/kBT , where Eg � kBT is a constant. How does
the total conductivity of this semiconductor scale with temperature? Argue whether the change in τ or
that in n dominates.

Solution:

σtot = ne2τ

(
1

me
+

1

mh

)
(26)

σtot ∝ e
−Eg
kBT

1

T
(27)

Since n changes faster than τ due to exponential dependence on T, n dominates the conductivity.
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