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Solid state physics 2018 Final Exam
20th April 2018

Good luck!

You may not use textbooks, notes, or calculators.

Fill out your student number, your name, and your family name below. Only provide answers
inside the answer boxes.

1 2 3 4 5 6 7 8 9 0
Student number: First name:

Last name:

1. Crystal structure

(a) Write down definitions of: a primitive unit cell, a conventional unit cell, and a Wigner-Seitz unit
cell. (5 points)

Primitive unit cell: minimally possible volume that covers the complete space upon translations by the
lattice vectors.
Conventional unit cell: a unit cell “comfortable” to work with (often cubic).
WS unit cell: all points in space closer to a specific lattice point than to any other.

1



Exam: solidstate-2018-final, Copy: 1, Page: 2

(b) Consider the FCC lattice shown below with lattice constant a. Write down the basis using the
conventional unit cell. Compute the structure factor and determine the selection rules of (h, k, l)
which give both constructive and destructive interference.(5 points)

Basis: (0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2).

S = f × (1 + eiπ(h+l) + eiπ(h+k) + eiπ(k+l))

Constructive interference: h, k, l all even or all odd. Destructive interference: all the other options.
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(c) Distorting Crystal structure

We now displace the atom marked by an arrow in the image above in the positive z-direction by
a distance δ as well as all the atoms equivalent to that one by the translations of the conventional
unit cell.

Write the primitive lattice vectors for the cases δ = 0 and 0 < δ < a. (10 points)

δ = 0: (a/2, a/2, 0), (a/2, 0, a/2), (0, a/2, a/2).
δ 6= 0: (a, 0, 0), (0, a, 0), (0, 0, a).

(d) Compute the structure factor for the scattering vector (h, k, l) as a function of δ. Then use this
expression to determine the scattering amplitudes for scattering vectors (1, 1, 1), (1, 1, 0) and
(0, 0, 1). (10 points)

S = f × (1 + eiπ(h+l) + e2iπlδ/aeiπ(h+k) + eiπ(k+l))

(1, 1, 1): S = f(3 + e2πiδ/a)
(1, 1, 0): S = 0
(0, 0, 1): S = f(3 + e2πiδ/a)
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(e) Which additional diffraction peaks appear when δ 6= 0, compared to δ = 0? Which peaks stay
absent when δ 6= 0? (10 points)

h, k odd, l = 0 are still absent from the interference pattern, all the other peaks appear.

(f) Compute the intensity of the new peaks that appear for δ > 0 when l � a/δ. Explain how the
intensities of these diffraction peaks may be used to determine δ in an X-ray experiment. (10
points)

Expanding S in Taylor series we get S ≈ f × 2πilδ/a, and the intensity is proportional to |S2|. Therefore
comparing the brightness of these peaks with the peaks corresponding to constructive interference allows to
determine δ.
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2. Magnetic semiconductor
An undoped semiconductor with electron and hole effective masses me and mh is placed in an external
magnetic field, so that all electrons experience a Zeeman splitting gµBB. This makes the dispersion
relation of electrons with spin up differ from that of electrons with spin down (in both the conduction
and the valence band). We consider a sufficiently weak magnetic field, so that gµBB � EG, with EG
the semiconductor band gap. In this problem if you do not know how to deal with Zeeman splitting,
disregard spin-related phenomena to get partial points in any subquestion except for the last one.

(a) Draw the band structure of such a semiconductor, showing both the bands of spin up electrons
and spin down electrons. Hint: check that when B = 0 your answer coincides with band structure
of a semiconductor. (10 points)

Zeeman splitting moves spin up electrons and holes up by EZ ≡ gµBB and spin down bands down by the
same amount. Therefore the dispersion consists of 4 parabolas:

0
k

EC + EZ

EC EZ

EV + EZ

EV EZ

E

(b) Draw the density of states g(E) of this semiconductor and indicate the relevant energy scales.
Hint: once again check that when B = 0 your answer coincides with density of states of a regular
semiconductor. (10 points)

Each of the four different bands contributes a square root-shaped density of states starting at the energy of
that band at k = 0. Summing up all 4 contributions we get

EC + EZEC EZEV + EZEV EZ
E

0

g(
E)

Note: not summing up the contributions of different spins only resulted in a minor penalty
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(c) Compute the number of electrons and holes with spin up and spin down as a function of EF .
Write down the charge neutrality condition for this material. Use that you may approximate
Fermi-Dirac distribution as Boltzmann distribution when EG � kBT . Hint: once again your
answer should agree with a regular semiconductor when B = 0. (10 points)

While repeating the full derivation of the semiconductor number of particles would be a correct solution,
we do not need to redo all the work. Instead we can observe that the situation is the same as in the regular
semiconductor, except for two changes:

i. The number of particles in each band is half of that in the original sermiconductor

ii. The bands are displaced in energy by ±EZ
Therefore we get

ne↑ =
NC

2
e−β(EC+EZ−EF )

ne↓ =
NC

2
e−β(EC−EZ−EF )

nh↑ =
NV

2
e−β(−EV −EZ+EF )

nh↓ =
NV

2
e−β(−EV +EZ+EF ),

with β = 1/kBT . The charge balance condition requires that ne↑ + ne↓ = nh↑ + nh↓
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(d) Using the charge neutrality condition determine the concentrations of electrons and holes with
spin up and spin down when magnetic field is large gµBB � kBT . Hint: two of the four
concentrations will be small. (10 points)

Substituting the expressions for the particle concentrations into the charge balance equation we get

NCe
−β(EC−EF ) coshβEZ = NV e

−β(EF−EV ) coshβEZ

This is the same as the charge balance condition in a regular seminconductor, except for the extra factor of
coshβEZ in front of NC and NV . To solve this equation we can express EF through the rest of the problem
parameters ans substitute it back into the answer for the previous problem. Alternatively we may once again
adjust the answer for the regular intrinsic semiconductor by observing that the spin down electron band shifts
towards EF by the same amount as the spin up hole band, and therefore EF does not change with magnetic
field. This means that the concentrations of the bands closer to EF are increased: ne↓ = nh↑ = nie

βEZ/2,
while the other two concentrations are decreased by the same amount: ne↑ = nh↓ = nie

−βEZ/2.
Here we did not use EZ � kBT , which simplifies the math a bit, but does not change the answer.

(e) Using the answer of the previous subproblem, compute the total magnetization M of this semi-
conductor due to spins when gµBB � kbT . Sketch M(B), the dependence of magnetization on
B. (10 points)

M = −µB(ne↑ − ne↓ − nh↑ + nh↓). Note that:

• The contribution of holes to magnetization is the opposite of that of electrons because we are removing
particles with a certain spin.

• The signs are such that we obtain a paramagnet, just like we would if having free spins.

Substituting the expressions for concentrations we get M = 2µBni sinhβEZ . In the limit EZ � kBT , M is
given by the concentration of majority spin carriers, and equals µBnie

βEZ . If we only derived that limit, we
could understand the behavior of magnetization at small fields by observing that at B = 0 the magnetization
should vanish. We then arrive to the following sketch of magnetization:

0
B

0M
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3. Extra answer space
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