## Solid state physics 2019 Final Exam $_{\rm April~16th,~2019}$ Final Exam

Good luck!

- You may not use textbooks, notes, or calculators.
- When plotting, label the axes and mark the important values.
- If you need extra answer space: ask for an extra exam copy, fill in your name and continue writing the solution.

| 1. ( | 35 points) Band structure of phonons in 1D                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Consider a 1D chain of atoms of mass $m$ connected by springs with alternating spring constants $\kappa_1$ and $\kappa_2$ and a distance $a$ between the atoms as shown below. |
|      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                          |
|      | (a) (5 points) Write down the equations of motion for the atoms in a unit cell of this chain. Formulate the running wave ansatz for computing the dispersion relation.         |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      | (b) (10 points) Find the dispersion relation by solving the equations of motion.                                                                                               |
|      | (b) (10 points) Find the dispersion relation by solving the equations of motion.                                                                                               |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |
|      |                                                                                                                                                                                |

| are close but                                |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|----------------------------------------------|----------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------|---------------------------|------------------------|------------------|
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
|                                              |                                                    |                                                 |                                         |                                       |                           |                           |                        |                  |
| Iow does thi                                 | implify the four<br>s approximate<br>spring consta | ${ m c}$ dispersiont? How ${ m c}$              | on of the<br>can the di                 | acoustic b<br>spersion o              | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate                                      | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| low does the rith only one ibrational free   | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cod from  |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| Iow does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does thing ith only one ibrational free  | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |
| How does this vith only one ribrational free | s approximate<br>spring consta<br>equency spectro  | e dispersiont? How on the dispersion of a sire. | on of the<br>can the di-<br>ngle diator | acoustic b<br>spersion o<br>nic molec | ranch rela<br>f the optic | te to that<br>al branch l | of a mon<br>be underst | atomic cood from |

## $2. \ (35 \ \mathrm{points}) \ \mathbf{Zinc\text{-}blende} \ \mathbf{crystal} \ \mathbf{structure}$

Consider the Zinc-blende crystal structure shown below.



| (a) | (5 points) Give a set of primitive lattice vectors and the corresponding basis.                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
| (b) | (10 points) Calculate the filling factor of this crystal, assuming that the atoms have equal radii $r_A = r_B$ For what ratio of $r_B/r_A$ do you expect the filling fraction to be maximal? |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |
|     |                                                                                                                                                                                              |

| (c) | (10 points) Calculate the reciprocal lattice vectors corresponding to the lattice vectors you formulated in (a). Calculate the volume of the primitive unit cell of the reciprocal lattice.                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
| (d) | (10 points) Compute the structure factor $S$ corresponding to the lattice vectors found in (a) (so the primitive lattice vectors). Use $f_A$ and $f_B$ as form factors for atoms A and B. Which diffraction peaks vanish when $f_A = f_B$ ? |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                             |

| Consider a <b>two-dimensional</b> semiconductor with a band gap $E_G \gg k_B T$ . The effective electron mass the bottom of the conduction band is $m_e$ . The effective hole mass at the top of the valence band is $m_h > m_e$ . We put the zero of energy at the top of the valence band and consider the semiconductor to be the intrinsic regime. The Fermi level is far from both bands, and we may assume Boltzmann distribution electrons and holes. | $m_h$ , e in |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (a) (10 points) Compute and sketch the density of states of this semiconductor.                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| (b) (10 points) Calculate the concentration of holes $n_h$ in the valence band as a function of the Fe energy $E_F$ , temperature $T$ , and $m_h$ . Also calculate the concentration of electrons $n_e$ in the conduction band as a function of the Fermi energy $E_F$ , temperature $T$ , and $m_e$ .                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |

| (c) | (5  points) Write down an expression for the electron heat capacity of this semiconductor as an integral over energies.                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
| (d) | (5  points) Discuss whether the electron heat capacity becomes larger than the phonon heat capacity as temperature is lowered towards 0K. |
| (d) |                                                                                                                                           |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |
| (d) | temperature is lowered towards 0K.                                                                                                        |