Solid state physics 2019 Minitest 3 $_{29~\mathrm{March}~2019}$

Good luck!

- You may not use textbooks, notes, or calculators.
- When plotting, label the axes and mark the important values.
- If you need extra answer space: ask for an extra exam copy, fill in your name and continue writing the solution.

1. (50 points) Consider hexagonal boron nitride - a crystal that consists of atomic layers that have a honeycomb crystal structure, with half the atoms being boron (B, filled circles) and half nitrogen (N, empty circles) shown here:

The layers are stacked such that on top of each boron atom there is a nitrogen atom in the next layer and vice versa, as shown in the plot below. The distance between neighboring B and N atoms within each layer is a, the distance between the layers is h.

(a) (10 points) Draw the primitive lattice vectors, and a primitive unit cell of hexagonal boron nitride in the plot below. Does this unit cell stay primitive if we make all atoms the same? Explain your answer.

(b)	(10 points) Write down the lattice vectors in Cartesian coordinates. Write down the basis.
(c)	(10 points) Compute the reciprocal lattice vectors.
(c)	(10 points) Compute the reciprocal lattice vectors.
(c)	

(d)	(10 points) Compute the structure factor using the form factors f_B and f_N of boron and nitrogen.	
(e)	(10 points) For which reciprocal lattice vectors $\mathbf{G} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3$ do diffraction peaks disappe when $f_B = f_N$?	aı
(e)		
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B = f_N$?	
(e)	when $f_B=f_N$?	
(e)	when $f_B=f_N$?	

2.	(50)	points)	Consider	1D	electrons	${\rm in}$	a	potential
----	------	---------	----------	----	-----------	------------	---	-----------

$$V(x) = \sum_{n=-\infty}^{\infty} [A\delta(x - 2na) + B\delta(x - (2n+1)a)].$$

Here $\delta(x)$ is the Dirac delta-function.

I						
(10 noints) (Commute the di	go of the gan	hatman the	first and the	record band	and the gan be
	Compute the six	ze of the gap	between the	first and the	second band,	and the gap be
second and t						
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					
second and t	he third band.					

To points			in the case A :			.sc 11 + D:
10 points	Sketch the	band structure	for $A = -B$.	Which band gap	s are equal to 0	?

1	(10 points) Compute the effective electron mass for the first band at $k = 0$. Write down the dispersion relation near $k = \pi/2a$ for $A \neq B$. Would you expect the effective mass at $k = \pi/2a$ to be lower or higher than at $k = 0$? Explain your answer.